White Papers and eBooks

Explore thought leadership surrounding embedded computing technologies, and gain in-depth knowledge about the industry and open standards trends.

Virtualizing the RAN and Edge Computing

Virtualizing the RAN and Edge Computing

There are significant changes taking place in radio access networks and at the edge of telecom networks. With so many ways to implement 5G, multi-access edge computing (MEC) and the various flavors of virtualization, there are numerous different deployment models.

This white paper introduces the virtual RAN, cloud RAN and MEC with an insight into the new applications they can enable, with a focus on how carriers can potentially save money on infrastructure development and make money from new services.

 

Read more

What if? - How Safety Systems differ from Reliable Systems

What if? - How Safety Systems differ from Reliable Systems

Developing a SIL4 fault-tolerant safety platform and having it certified by an accredited agency requires a significant effort and investment. There are many ‘what if...?’ questions to be addressed at every stage of development, testing and certification. This paper introduces the relevant functional safety standards and some of the areas for consideration including formal failure analysis, voting, the safety communication layer, common mode failures, safety analysis, variations in the operating environment, and certification.

 

Read more

SEUs, Faults and System Level Safety

SEUs, Faults and System Level Safety

An SEU or single event upset is a change in state of a storage element inside a device or system. It’s an example of the kind of fault in a system that may go unnoticed for many years as the system continues to operate as expected. This paper outlines how SEUs and other latent faults, which can affect functional safety systems, can be mitigated through a system-level approach. This can improve the projected dangerous failure rate of a functional safety system by an order of magnitude over the life of a system without requiring additional periodic or proof testing requirements upon the user.

 

Read more

COTS Bladed Server Architecture for High Performance Defense Applications

COTS Bladed Server Architecture for High Performance Defense Applications

AdvancedTCA® (or ATCA®) technology has proven itself to be one of the most successful open, bladed architectures for high-performance, ultra-reliable network computing. The PCI Industrial Computer Manufacturer Group (PICMG®) ratified the original ATCA open standard specification 15 years ago, has enhanced it over the years, and continues be an active organization of vendors and users. ATCA has defined a system architecture that supports systems which are compact, light and power efficient—which has become an ideal choice for military, aerospace and security systems.

 

Read more

Server Based Solutions for Self-Organizing Networks

Server Based Solutions for Self-Organizing Networks

The evolution of networks across generations of evolving protocols has led to a complex mixture of deployed wireless systems. Development towards 5G and the increasing use of heterogeneous networks (HetNets) to improve coverage with fill-in solutions has created an environment of growing complexity, whose management and resource allocation has become a key issue for network operators.

This paper presents the ideas and initiatives driving self-organizing networks (SONs), a key enabler for effective 5G deployment. The authors look closely at the challenge of a data center-based eNodeB pool in a Cloud RAN (C-RAN) context and present a possible solution based on open standard technologies.

Read more

Trends and Drivers in Fail-Safe Architectures for Rail Systems

Trends and Drivers in Fail-Safe Architectures for Rail Systems

The market for embedded computing technologies in rail applications is following a similar trend as has been seen in other embedded market spaces. A layer of the technology value chain becomes ‘table stakes’— delivering limited competitive advantage to a point that it makes sense for application providers to reallocate R&D resources to differentiating elements of the end product and buy the base technology from companies who are dedicated to that technology. We are witnessing this transition in the rail market for embedded computers that are certified to safety integrity level four (SIL4), the highest level. These embedded computers offer a certified, commercial offthe-shelf (COTS) generic fail-safe platform allowing rail application developers to focus their R&D resources on differentiating applications.

Read more

Maximizing Safety Without Compromising Reliability

Maximizing Safety Without Compromising Reliability

A programmable electronic system can be defined as functionally safe if it operates correctly and predictably, so that even in the event of failures it remains safe for persons and the environment. Such a system can be defined as reliable if it performs its function without failure for a specified period of time. These attributes can lead to conflicting requirements and very different designs.

For example, to achieve high levels of functional safety, one method is to compare two or more channels as a diagnostic so that if a difference is detected, the system enters a “fail-safe” state and stops delivering its prescribed service.

Read more

Enabling More Versatility and Higher Performance for VNFs with the MaxCore™ Platform

Enabling More Versatility and Higher Performance for VNFs with the MaxCore™ Platform

The Artesyn MaxCore™ platform offers a versatile and dense architecture to achieve maximum compute and media processing density. Through its use of Artesyn technology microserver cards, Artesyn media processing PCI Express cards and third party PCI Express cards, it offers maximum flexibility, maximum density per rack unit (RU), and unmatched innovation in design for both datacenter and carrier grade applications.

This white paper will spell out the benefits of the MaxCore platform and explain how it is explicitly designed to meet the challenges of the emerging NFV/SDN era. The paper will examine how the MaxCore chassis is superior to others in its power, versatility, flexibility and efficiency.

Read more

Digital Broadcast Video Streaming

Digital Broadcast Video Streaming

Broadcast network operators and communications service providers have to make digital video broadcasting meet a number of contradicting requirements in order to maintain its growth trajectory and monetize the associated traffic. The main contradiction lies in the simple fact that the underlying technology is based on a point-to-point technology trying to mimic one-to-many broadcast technology.

However, broadcasting via IP networks can offer significant advantages as well as the ability to provide additional services around the actual broadcast, allowing access to extended, new customer groups and new audiences.

This white paper outlines the technical challenges facing video over IP business models and the associated issue of intellectual property protection, discusses possible solutions, and offers a route to success in this dynamic and fast-changing market.

Read more

Virtual Video Transcoding in the Cloud

Virtual Video Transcoding in the Cloud

The increasing density and high-quality processing demands from video applications is pushing broadcast and communications networks to the limit. Adding more equipment to handle these video streams is not economically viable. What's more, operators, service providers and content providers see the benefits of using standard servers in the cloud, and want to move away from special appliances or dedicated hardware. But standard servers currently are not optimized for video transcoding in the cloud.

Read more

Broadcast Video white paper

Cost-Effective Deployment of High-Quality Video Processing for Broadcast Using Off-the-Shelf Technology

 

This white paper outlines the trends driving the need for high-quality video transcoding and encoding and offers an alternative to conventional host media processing (HMP).
Using a PCI Express video accelerator and embedded broadcast video processing firmware, this approach offers dramatically improved performance, taking up less space, consuming less power and costing less. Furthermore, it shows how you can achieve that level of flexibility in a server-based environment.
Specific application examples demonstrate the performance and cost virtues of this approach.
This white paper outlines the trends driving the need for high-quality video transcoding and encoding and offers an alternative to conventional host media processing (HMP). Using a PCI Express video accelerator and embedded broadcast video processing firmware, this approach offers dramatically improved performance, taking up less space, consuming less power and costing less. Furthermore, it shows how you can achieve that level of flexibility in a server-based environment. Specific application examples demonstrate the performance and cost virtues of this approach.

 

Read more

High Density Digital Signal Processing with ATCA

High Density Digital Signal Processing with ATCA

Traditional methods of digital signal processing in military and aerospace applications have used specialized FPGAs, multiprocessor VME or OpenVPX solutions. Advances in microprocessor technology and accompanying software could mean that AdvancedTCA® (ATCA®) has the potential to replace some of those elements in complex signal processing applications.

Read more

Deep Packet Inspection (DPI) Use Cases, Requirements and Architectures

Deep Packet Inspection (DPI) Use Cases, Requirements and Architectures

Deep packet inspection (DPI) is a technique with many different use cases, delivering information about packet flows and content as well as allowing network operators and service providers to ensure quality of service at an application level.

Read more

Adding Media Processing to Server-Based Applications

Adding Media Processing to Server-Based Applications

High density voice and video processing is increasingly in demand for applications such as session border controllers, media gateways/servers or media resource functions, video or content optimization, video communications servers, and interactive voice and video response systems.

Read more

Achieving Critical Advantage Through Optimized Media Processing Applications Based on ATCA® Technology

Achieving Critical Advantage Through Optimized Media Processing Applications Based on ATCA® Technology

Our thirst for rich multimedia experiences without boundaries on an endless variety of devices continues to grow unquenched. Therefore, the ability to manipulate media streams in carrier networks has become a source of critical advantage to network operators and service providers.

Read more

Corporate website design by Freshleaf Media