

ARTESYN AEE 15W-M SERIES DC/DC Converter

PRODUCT DESCRIPTION

Advanced Energy's Artesyn AEE15W-M series is the new range of high performance DC-DC converter with a reinforced insulation system. I/O- isolation voltage is specified for 4200VACrms. The product comes in a compact 2"x1" industry standard package. All models provide wide 2:1 input voltage range and fully regulated output voltage regulation.

The AEE15W-M series DC/DC converters offer an economical solution for demanding applications in medical instrumentation requesting a certified supplementary or reinforced insulation system to comply with the latest medical safety standards.

SPECIAL FEATURES

- 4200Vac reinforced Insulation
- Insulation rated for 300Vrms working voltage
- Medical safety meets 2xMOPP per 3rd Edition of IEC/EN60601-1&ANSI/AAMI ES60601-1 with CE Marking
- Wide 2:1 input voltage range
- Fully regulated output voltage
- No min. load requirement
- Overload/Voltage and Short Circuit Protection
- Low leakage current <5 µA
- Operating temperature range
 -40 °C to +85 °C (with derating)
- Input filter meets EN55011, Class A and FCC, Level A
- Medical EMC Standard meets 4th Edition of EMI EN55011 and EMS EN60601-1-2
- 2"x 1" plastic package

3 Years product warranty

SAFETY

- EN/IEC60601-1 3rd Edition, ANSI/AAMI ES60601-1, 2 *MOPP
 CE Mark
- CE Mark

TYPICAL APPLICATIONS

- Distributed power architectures
- Workstations
- Computer equipment
- Communications equipment
- Medical equipment

AT A GLANCE

Total Power

15 Watts

Input Voltage

9 to 18 Vdc

18 to 36 Vdc

36 to 75 Vdc

of Outputs

Single / Dual

Model Numbers

Model	Input Voltage	Output Voltage	Maximum Load	Efficiency
AEE03A12-M	9 - 18Vdc	5Vdc	3A	86%
AEE01B12-M	9 - 18Vdc	12Vdc	1.25A	89%
AEE01C12-M	9 - 18Vdc	15Vdc	1A	88%
AEE01H12-M	9 - 18Vdc	24Vdc	0.625A	88%
AEE01BB12-M	9 - 18Vdc	±12Vdc	±0.625A	88%
AEE01CC12-M	9 - 18Vdc	\pm 15Vdc	±0.5A	89%
AEE03A24-M	18 - 36Vdc	5Vdc	ЗА	88%
AEE01B24-M	18 - 36Vdc	12Vdc	1.25A	89%
AEE01C24-M	18 - 36Vdc	15Vdc	1A	89%
AEE01H24-M	18 - 36Vdc	24Vdc	0.625A	90%
AEE01BB24-M	18 - 36Vdc	±12Vdc	±0.625A	90%
AEE01CC24-M	18 - 36Vdc	\pm 15Vdc	±0.5A	89%
AEE03A48-M	36 - 75Vdc	5Vdc	ЗА	88%
AEE01B48-M	36 - 75Vdc	12Vdc	1.25A	88%
AEE01C48-M	36 - 75Vdc	15Vdc	1A	90%
AEE01H48-M	36 - 75Vdc	24Vdc	0.625A	89%
AEE01BB48-M	36 - 75Vdc	±12Vdc	±0.625A	89%
AEE01CC48-M	36 - 75Vdc	\pm 15Vdc	±0.5A	88%

Options

None

Absolute Maximum Ratings

Stress in excess of those listed in the "Absolute Maximum Ratings" may cause permanent damage to the power supply. These are stress ratings only and functional operation of the unit is not implied at these or any other conditions above those given in the operational sections of this TRN. Exposure to any absolute maximum rated condition for extended periods may adversely affect the power supply's reliability.

Table 1. Absolute Maximum Ratings						
Parameter	Model	Symbol	Min	Тур	Max	Unit
Input Surge Voltage 100mSec. max	12V Input Models 24V Input Models 48V Input Models	V _{IN,DC}	-0.7 -0.7 -0.7	- -	25 50 100	Vdc Vdc Vdc
Maximum Output Power	All Models	P _{O,max}	-	-	15	W
Isolation Voltage Input to Output (60 seconds)	All Models		4200	-	-	Vac
Isolation Resistance (500Vdc)	All Models		10	-	-	Gohm
Isolation Capacitance (100KHz,1V)	All Models		-	-	80	pF
Thermal Impedance	Natural Convection		13	-	-	°C/W
Operating Ambient Temperature Range	Natural Convection		-40		+801	°C
Operating Case Temperature	All Models	T _{CASE}	-	-	+95	°C
Storage Temperature	All Models	T _{STG}	-50		+125	°C
Humidity (non-condensing) Operating Non-operating	All Models		-	-	95 95	% %
MTBF	MIL-HDBK-217F@25 ^o C, Ground Benign		1000000	-	-	Hours

Note 1 - With Derating

Input Specifications

Table 2. Input Specifications							
Parameter		Condition	Symbol	Min	Тур	Max	Unit
Operating Input Voltage, DC	12V Input Models 24V Input Models 48V Input Models	All	V _{IN,DC}	9 18 36	12 24 48	18 36 75	Vdc
Start-Up Threshold Voltage	12V Input Models 24V Input Models 48V Input Models	All	V _{IN,ON}	- -	- -	9 18 36	Vdc
Under Voltage Lockout	12V Input Models 24V Input Models 48V Input Models	All	V _{IN,OFF}	- -	7.5 15 33	- - -	Vdc
Input reflected ripple current	12V Input Models 24V Input Models 48V Input Models	0 to 500KHz, Lin=4.7μH Cin=220uF, ESR< 1.0Ω at 100 KHz	_{IN,ripple}	- -	100 50 30	- -	mA
Input Current	AEE03A12-M AEE01B12-M AEE01C12-M AEE01H12-M AEE01BB12-M AEE01CC12-M AEE01B24-M AEE01B24-M AEE01B24-M AEE01B24-M AEE01B24-M AEE01B24-M AEE01B48-M AEE01C48-M AEE01B48-M AEE01BB48-M AEE01BB48-M	V _{IN,DC} =V _{IN,nom} I _O =I _{O,max}	I _{IN,max_load}		1453 1404 1420 1420 1420 1404 710 702 702 694 694 702 355 355 355 347 351 351 355		mA
No Load Input Current (V _O On, I _O = 0A)	12V Input Models 24V Input Models 48V Input Models	V _{IN,DC} =V _{IN,nom}	I _{IN,no_load}		20 15 10	- -	mA

Input Specifications

Parameter		Condition	Symbol	Min	Тур	Max	Unit
Efficiency @Max. Load	AEE03A12-M AEE01B12-M AEE01C12-M AEE01BB12-M AEE01BB12-M AEE01CC12-M AEE01B24-M AEE01B24-M AEE01C24-M AEE01H24-M AEE01BB24-M AEE01C24-M AEE01B48-M AEE01B48-M AEE01B48-M AEE01B48-M AEE01B48-M AEE01BB48-M AEE01BB48-M	V _{IN,DC} =V _{IN,nom} I _O =I _{O,max} T _A =25°C	η		86 89 88 88 89 88 89 89 90 90 89 89 88 88 88 90 89 88 88 88 88 88 88 88 88 88 88 88 88		%
Leakage Current	All Models	V _{IN,AC} =240Vac f _{IN} =60Hz	_{IN,Leakage}	-	-	5	μΑ
Internal Filter Type		All		Ir	ternal Pi Typ		

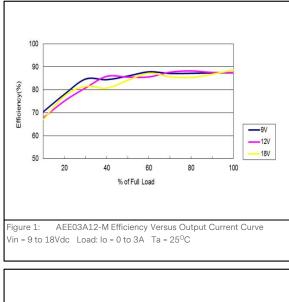
Output Specifications

Table 3. Output Speci	fications						
Parameter		Condition	Symbol	Min	Тур	Max	Unit
Output Voltage Set-Point	AEE03A12-M AEE01B12-M AEE01C12-M AEE01H12-M AEE01BB12-M AEE01B24-M AEE01B24-M AEE01B24-M AEE01B24-M AEE01B24-M AEE01B24-M AEE01CC24-M AEE01B48-M AEE01C48-M AEE01H48-M AEE01BB48-M AEE01BB48-M	V _{IN,DC} =V _{IN,nom} I _O =I _{O,max} T _A =25 °C	Vo	$\begin{array}{c} 4.95\\ 11.88\\ 14.85\\ 23.76\\ \pm 11.88\\ \pm 14.85\\ 4.95\\ 11.88\\ 14.85\\ 23.76\\ \pm 11.88\\ \pm 14.85\\ 4.95\\ 11.88\\ 14.85\\ 23.76\\ \pm 11.88\\ 14.85\\ 23.76\\ \pm 11.88\\ \pm 14.85\end{array}$	$5 \\ 12 \\ 15 \\ 24 \\ \pm 12 \\ \pm 15 \\ 5 \\ 12 \\ 15 \\ 24 \\ \pm 12 \\ \pm 15 \\ 5 \\ 12 \\ 15 \\ 24 \\ \pm 12 \\ \pm 15 \\ 24 \\ \pm 12 \\ \pm 15 \\ 24 \\ \pm 15 \\ 24 \\ \pm 15 \\ \pm 15 \\ 24 \\ \pm 15 \\ $	$\begin{array}{c} 5.05\\ 12.12\\ 15.15\\ 24.24\\ \pm 12.12\\ \pm 15.15\\ 5.05\\ 12.12\\ 15.15\\ 24.24\\ \pm 12.12\\ \pm 15.15\\ 5.05\\ 12.12\\ 15.15\\ 24.24\\ \pm 12.12\\ \pm 12.12\\ \pm 15.15\end{array}$	Vdc
Output Voltage Balance	Dual Output, Balanced Loads	All	±%V ₀	-	-	2.0	%
Output Current	AEE03A12-M AEE01B12-M AEE01C12-M AEE01H12-M AEE01BB12-M AEE01CC12-M AEE01B24-M AEE01B24-M AEE01C24-M AEE01BB24-M AEE01BB24-M AEE01CC24-M AEE01B48-M AEE01C48-M AEE01H48-M AEE01BB48-M AEE01BB48-M AEE01BB48-M	Natural Convection	Io			$\begin{array}{c} 3\\ 1.25\\ 1\\ 0.625\\ \pm 0.625\\ \pm 0.5\\ 3\\ 1.25\\ 1\\ 0.625\\ \pm 0.625\\ \pm 0.625\\ \pm 0.5\\ 3\\ 1.25\\ 1\\ 0.625\\ \pm 0.625\\ \pm 0.5\end{array}$	A

Output Specifications

Table 3. Output Specifica	ations Con't						
Parameter		Condition	Symbol	Min	Nom	Max	Unit
V _o Load Capacitance	AEE03A12-M AEE01B12-M AEE01C12-M AEE01H12-M AEE01BB12-M AEE01CC12-M AEE01B24-M AEE01B24-M AEE01B24-M AEE01H24-M AEE01H24-M AEE01B24-M AEE01B24-M AEE01B24-M AEE01B48-M AEE01C48-M AEE01H48-M AEE01B48-M AEE01B48-M AEE01CC48-M	All	C _o			5100 870 560 220 4401 2801 5100 870 560 220 4401 2801 5100 870 560 220 4401 2801	uF
Start Up Time (Power On)	All Models	V _{IN,DC} =V _{IN,nom} I _O =I _{O,max} Resistive Load	T _{Turn-On}	-	-	30	mSec
Line Regulation	All Models	$V_{IN,DC} = V_{IN,min}$ to $V_{IN,max}$ $I_O = I_{O,max}$	±%V _O	-	-	0.5	%
Lood Degulation	Single Output		19/1/	-	-	0.5	%
Load Regulation	Dual Output	$I_{O}=I_{O,min}$ to $I_{O,max}$	±%V ₀	-	-	1.0	- 70
Switching Frequency	All Models	All	f _{sw}	-	285	-	KHz
V _o Dynamic Response	Peak Deviation Settling Time	25% load change	±%V ₀ t _s	- -	±3 -	±5 300	% uSec
Temperature Coefficient		All	%/°C	-0.02	-	0.02	%
Output Over Current Protec	ction ²	All	%I _{O,max}	-	150	-	%
Output Short Circuit Protec	ction ³	All		Н	iccup Autor	natic Recov	rery

Note 1 - For each output Note 2 - Hiccup Automatic Recovery Note 3 - Hiccup Mode 0.7Hz typ., Automatic Recovery



Output Specifications

Table 3. Output Speci					-		
Parameter		Condition	Symbol	Min	Тур	Max	Unit
Output Over Voltage Protection	AEE03A12-M AEE01B12-M AEE01C12-M AEE01BB12-M AEE01BB12-M AEE01BC12-M AEE01B24-M AEE01B24-M AEE01H24-M AEE01B824-M AEE01B824-M AEE01CC24-M AEE01B48-M AEE01C48-M AEE01H48-M AEE01BB48-M AEE01BB48-M AEE01BB48-M	All			$\begin{array}{c} 6.2 \\ 15 \\ 18 \\ 27 \\ \pm 15 \\ \pm 18 \\ 6.2 \\ 15 \\ 18 \\ 27 \\ \pm 15 \\ \pm 18 \\ 6.2 \\ 15 \\ 18 \\ 27 \\ \pm 15 \\ 18 \\ 27 \\ \pm 15 \\ \pm 18 \\ 27 \\ \pm 15 \\ \pm 18 \end{array}$		Vdc
	AEE03A12-M AEE03A24-M AEE03A48-M			- -	50 50 50	- - -	
Output Ripple, pk-pk	AEE01B12-M AEE01C12-M AEE01BB12-M AEE01CC12-M AEE01B24-M AEE01BB24-M AEE01C24-M AEE01CC24-M AEE01B48-M AEE01C48-M AEE01B48-M AEE01CC48-M	Measure with a 4.7uF ceramic capacitor in parallel with a 10uF tantalum capacitor, 0 to 20MHz bandwidth	Vo		100 100 100 100 100 100 100 100 100 100		mV _{PK-PK}
	AEE01H12-M AEE01H24-M AEE01H48-M			- -	150 150 150	- -	

AEE03A12-M Performance Curves

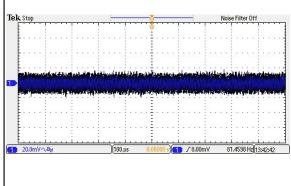
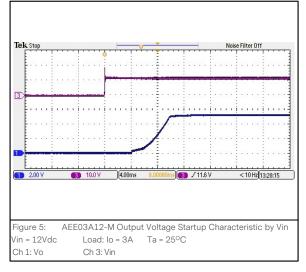



Figure 3: AEE03A12-M Ripple and Noise Measurement Vin = 12Vdc Load: lo = 3A Ta = 25°C Ch 1: Vo

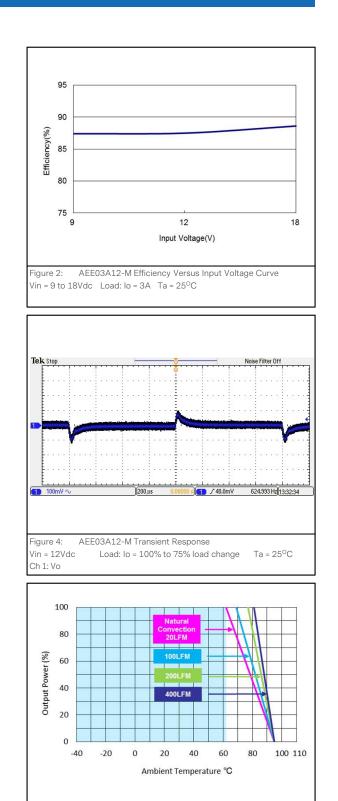
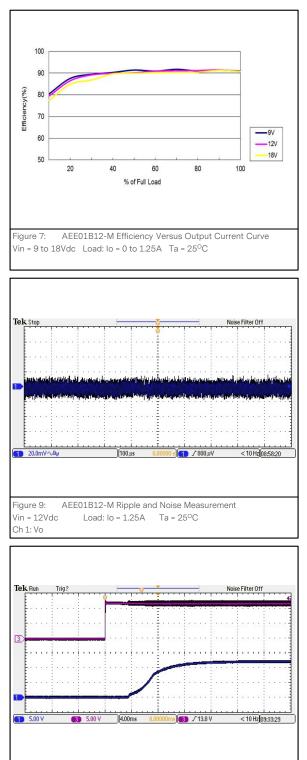



Figure 6:AEE03A12-M Derating Curve (without heatsink).Vin = 12VdcLoad: lo = 0 to 3ATa = 25°C

Advanced Energy

AEE01B12-M Performance Curves

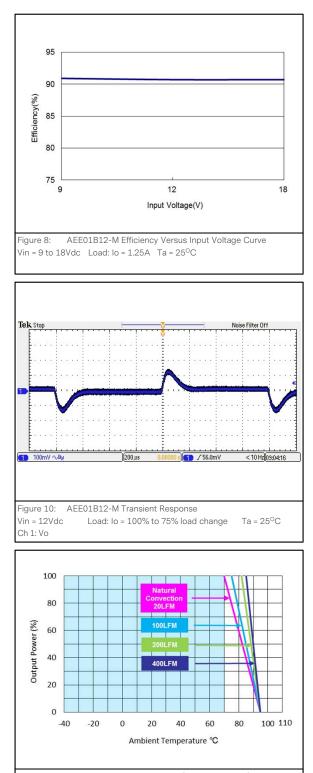


Figure 12:AEE01B12-M Derating Curve (without heatsink).Vin = 12VdcLoad: lo = 0 to 1.25ATa = 25°C

AEE01C12-M Performance Curves

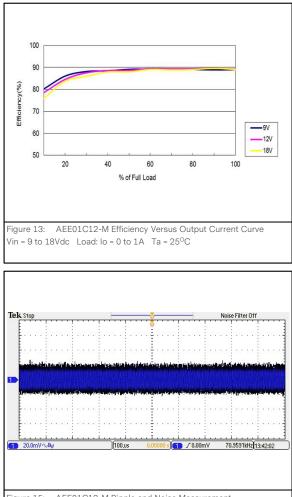
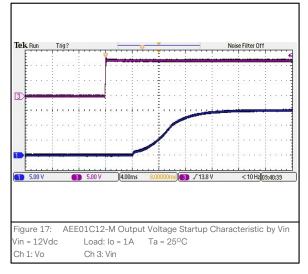
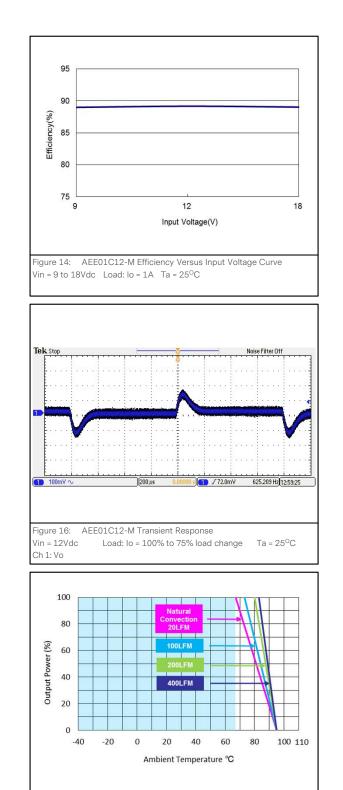
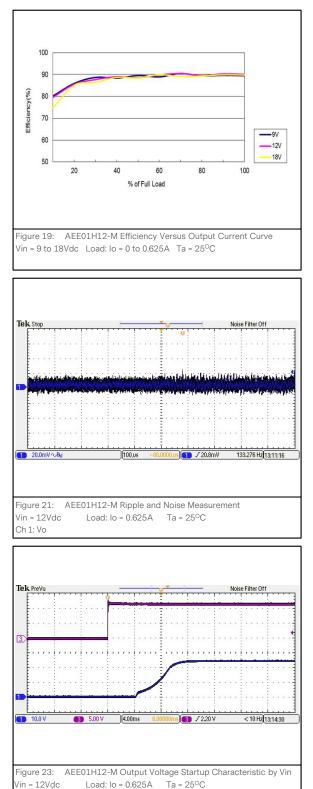
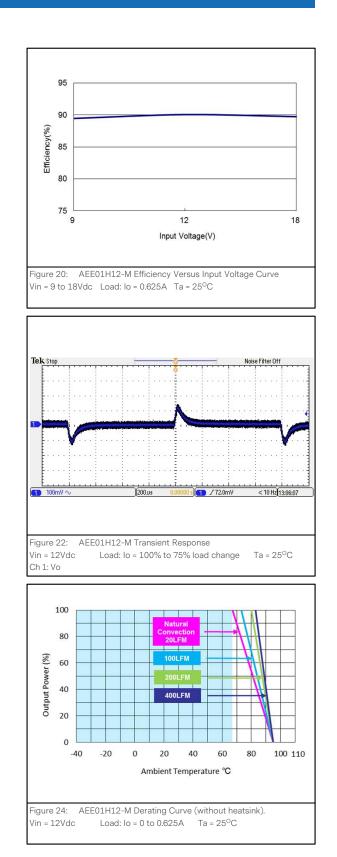



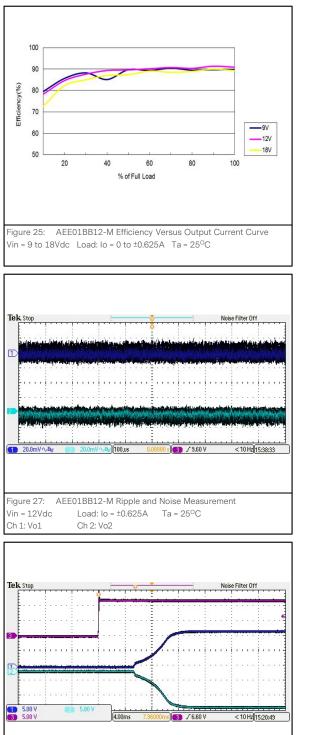
Figure 15: AEE01C12-M Ripple and Noise Measurement Vin = 12Vdc Load: lo = 1A Ta = 25°C Ch 1: Vo

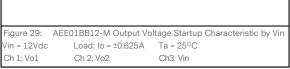




 Figure 18:
 AEE01C12-M Derating Curve (without heatsink).

 Vin = 12Vdc
 Load: Io = 0 to 1A
 Ta = 25°C

AEE01H12-M Performance Curves





Ch 1: Vo

Ch 3: Vin

AEE01BB12-M Performance Curves

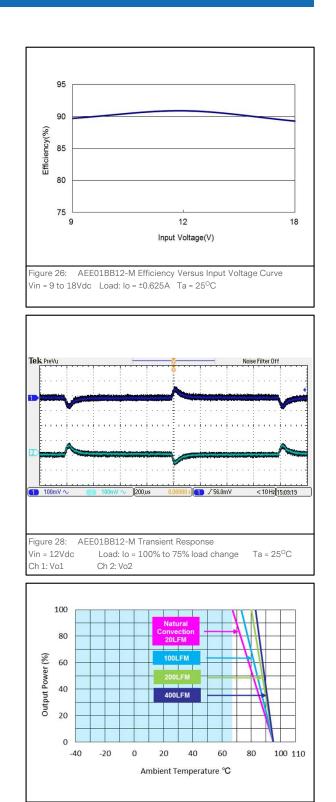
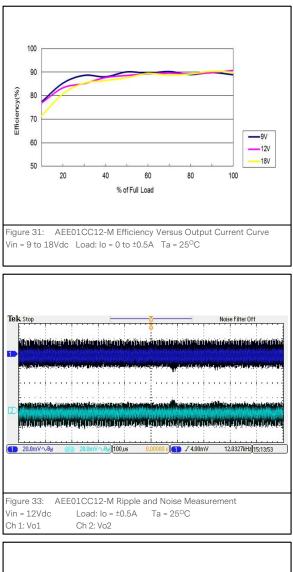
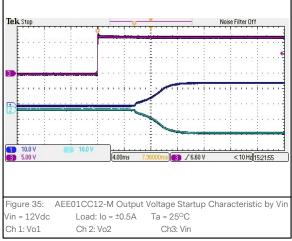




 Figure 30:
 AEE01BB12-M Derating Curve (without heatsink).

 Vin = 12Vdc
 Load: lo = 0 to ±0.625A
 Ta = 25°C

AEE01CC12-M Performance Curves

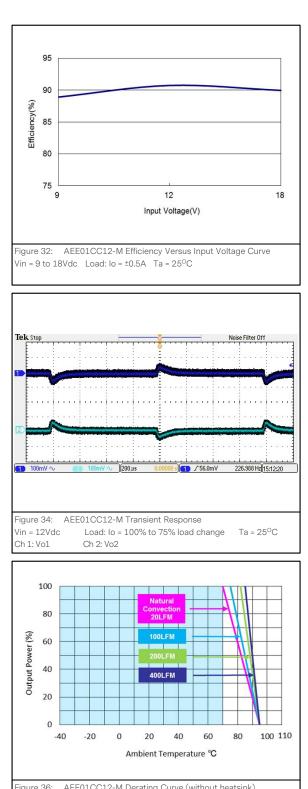
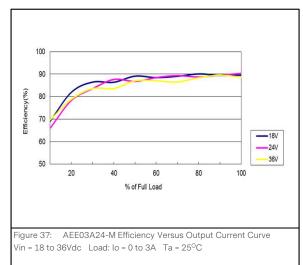



Figure 36:AEE01CC12-M Derating Curve (without heatsink).Vin = 12VdcLoad: Io = 0 to ±0.5ATa = 25°C

AEE03A24-M Performance Curves

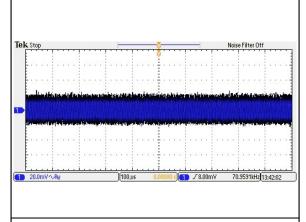
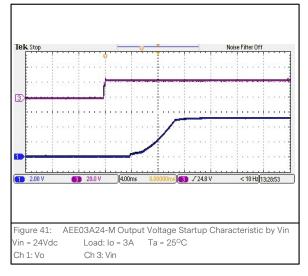
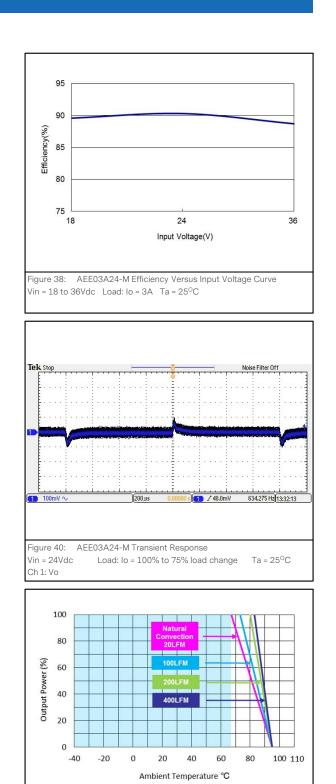
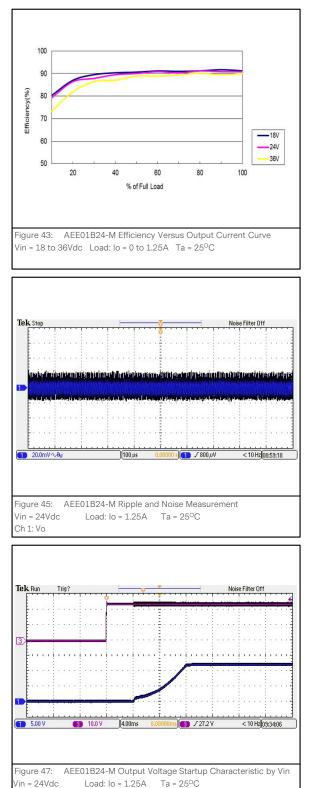
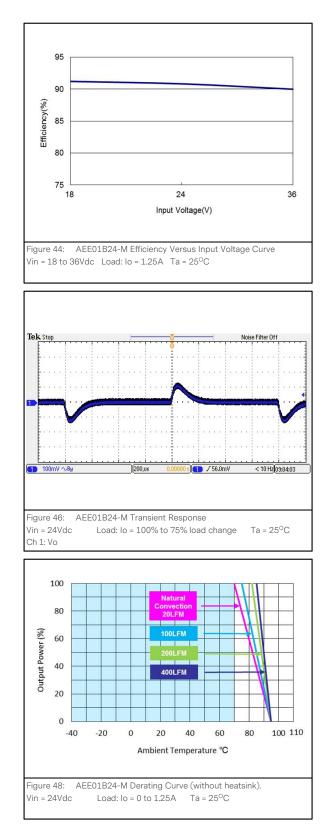



Figure 39: AEE03A24-M Ripple and Noise Measurement Vin = 24Vdc Load: Io = 3A Ta = 25°C Ch 1: Vo

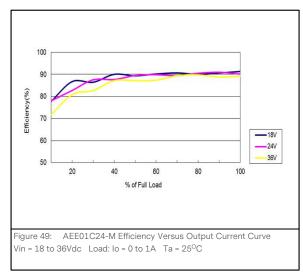




Figure 42: AEE03A24-M Derating Curve (without heatsink).

Load: Io = 0 to 3A Ta = 25°C

Vin = 24Vdc

AEE01B24-M Performance Curves



Advanced Energy

Ch 3: Vin

Ch 1: Vo

AEE01C24-M Performance Curves

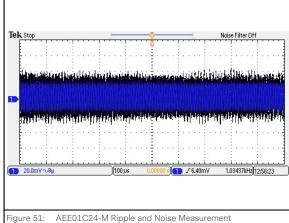
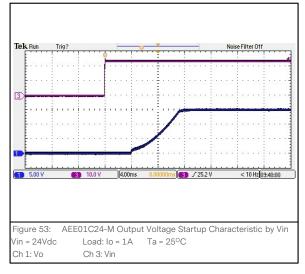



Figure 51: AEE01C24-M Ripple and Noise Measurement Vin = 24Vdc Load: Io = 1A Ta = 25°C Ch 1: Vo

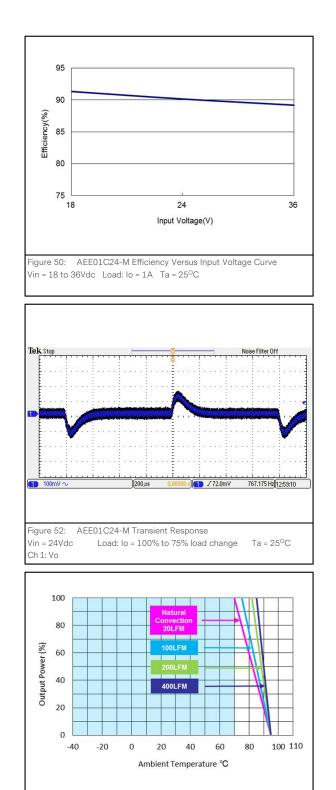
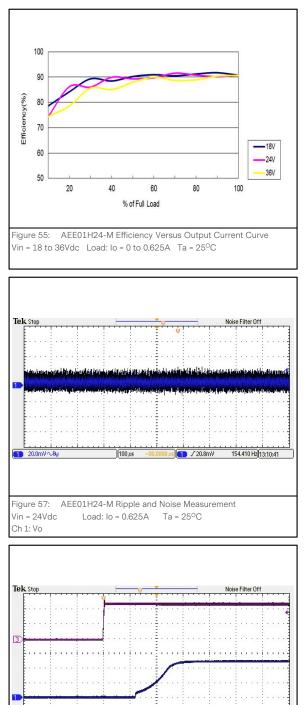
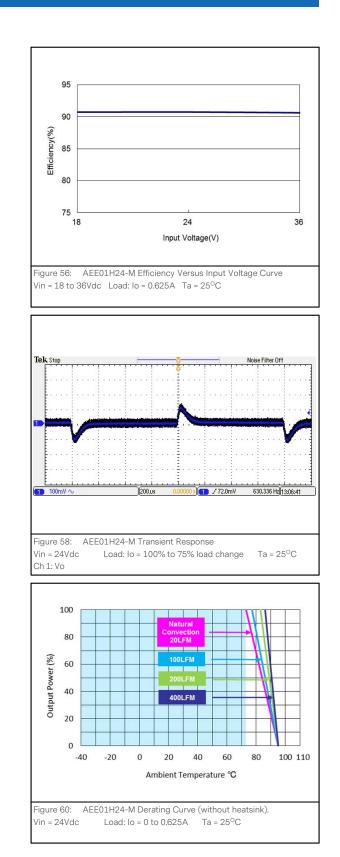




Figure 54:AEE01C24-M Derating Curve (without heatsink).Vin = 24VdcLoad: lo = 0 to 1ATa = 25°C

AEE01H24-M Performance Curves

Vin = 24Vdc

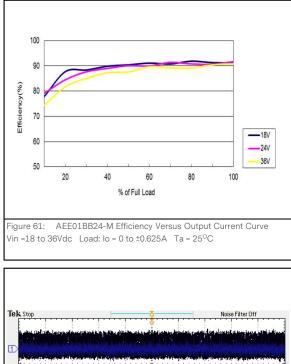
Ch 1: Vo

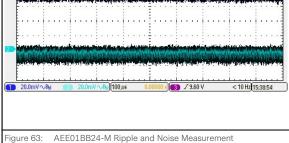
10.0

10.0

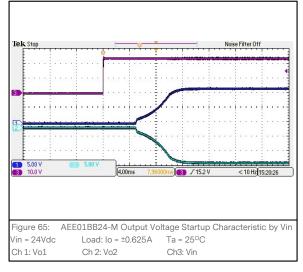
Ch 3: Vin

4.00m


Figure 59: AEE01H24-M Output Voltage Startup Characteristic by Vin

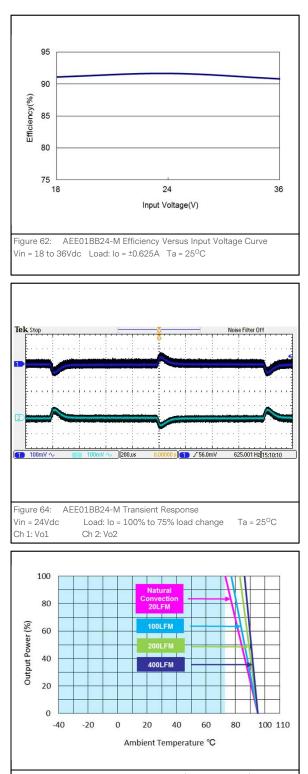
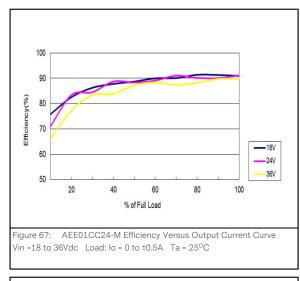
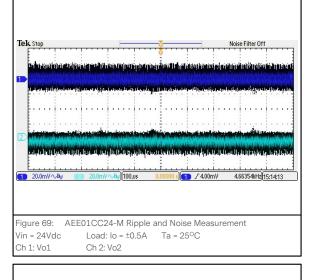

Load: Io = 0.625A Ta = 25°C

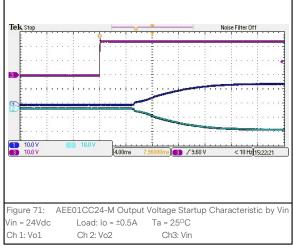
/184

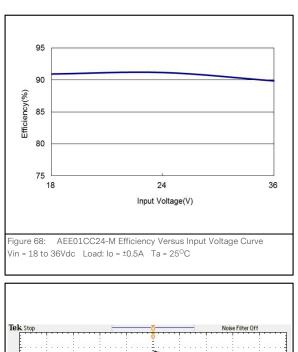

10 Hz 13:15:0

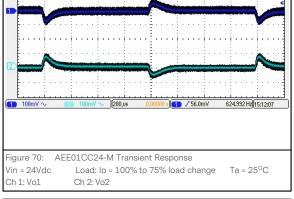
AEE01BB24-M Performance Curves

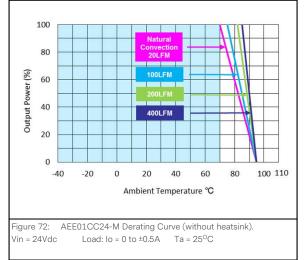
 $Vin = 24Vdc \qquad Load: lo = \pm 0.625A \qquad Ta = 25^{\circ}C$ $Ch 1: Vo1 \qquad Ch 2: Vo2$

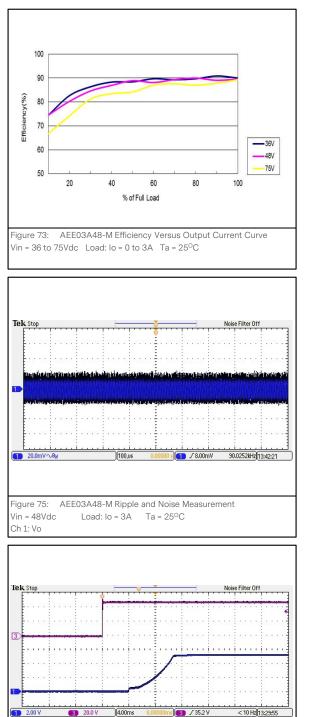





 Figure 66:
 AEE01BB24-M Derating Curve (without heatsink).

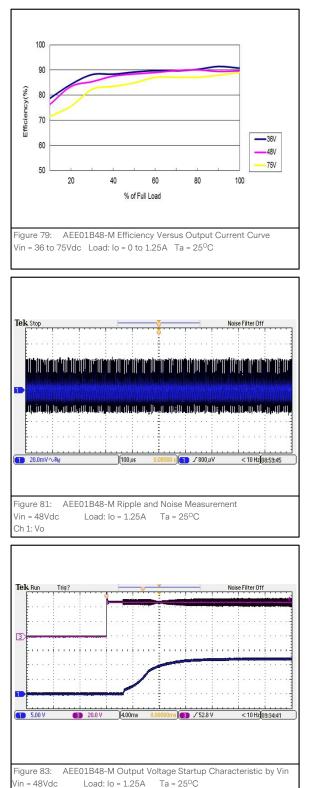

 Vin = 24Vdc
 Load: Io = 0 to ±0.625A
 Ta = 25°C

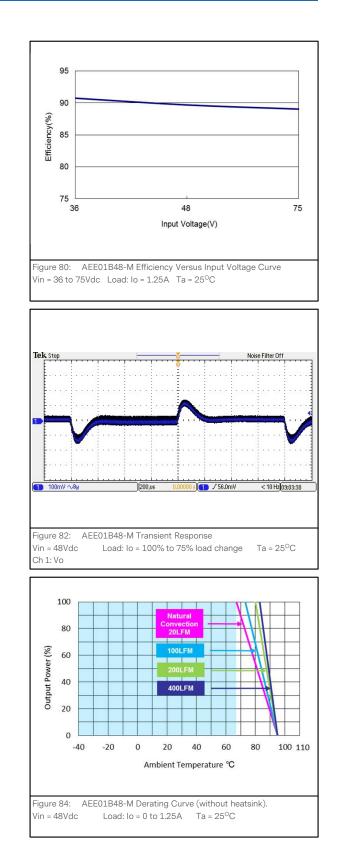

AEE01CC24-M Performance Curves





AEE03A48-M Performance Curves

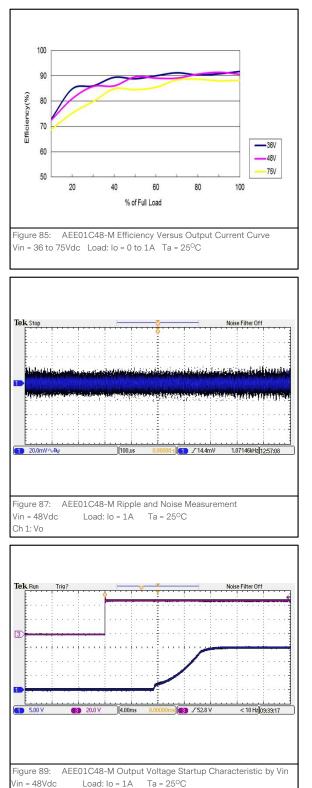


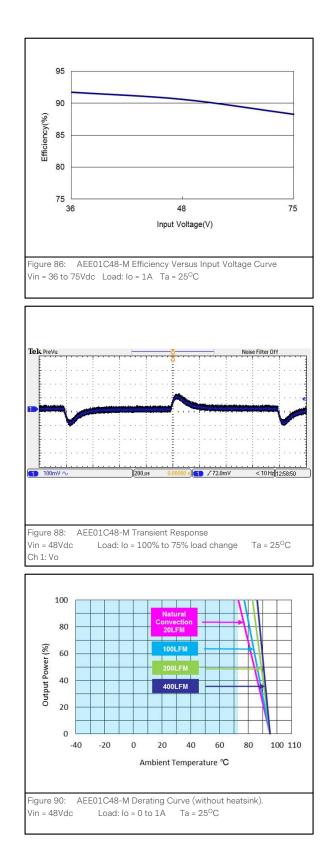


Vin = 48Vdc Load: Io = 3A Ta = 25°C Ch 1: Vo Ch 3: Vin

Figure 77: AEE03A48-M Output Voltage Startup Characteristic by Vin

AEE01B48-M Performance Curves

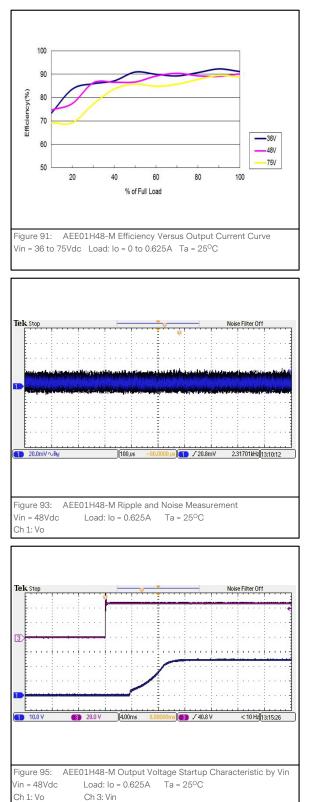


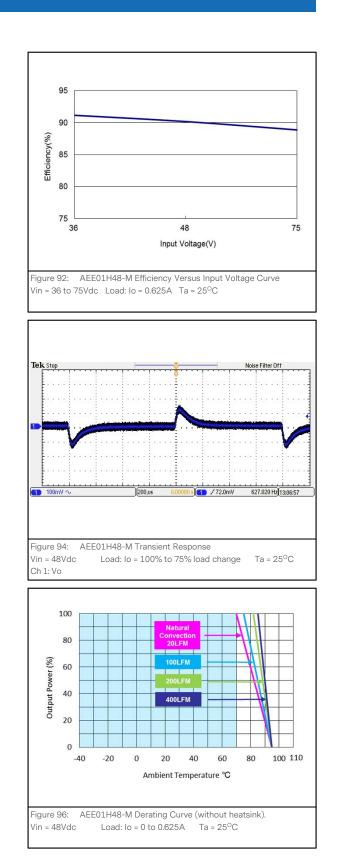


Ch 1: Vo

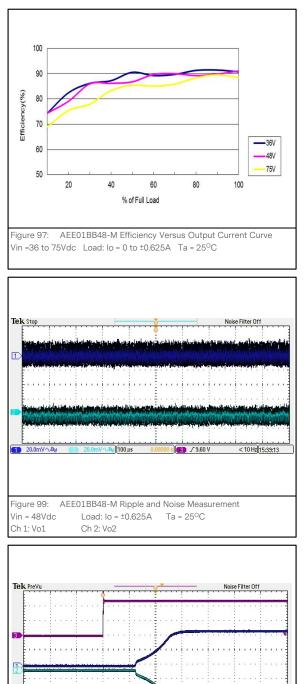
Ch 3: Vin

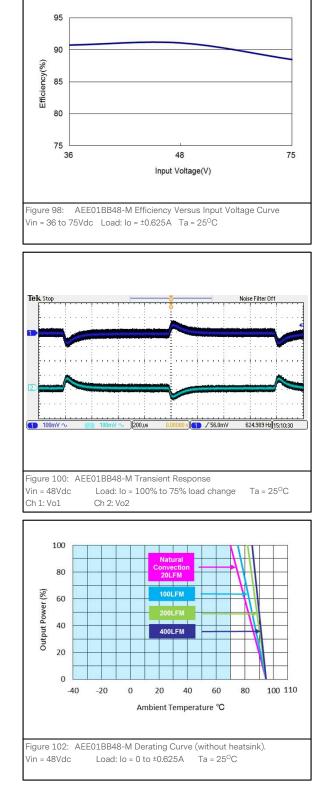
AEE01C48-M Performance Curves





Ch 1: Vo


Ch 3: Vin


AEE01H48-M Performance Curves

AEE01BB48-M Performance Curves

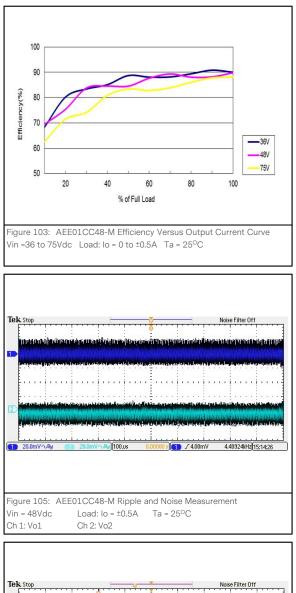
Vin = 48Vdc

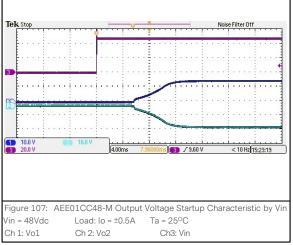
Ch 1: Vo1

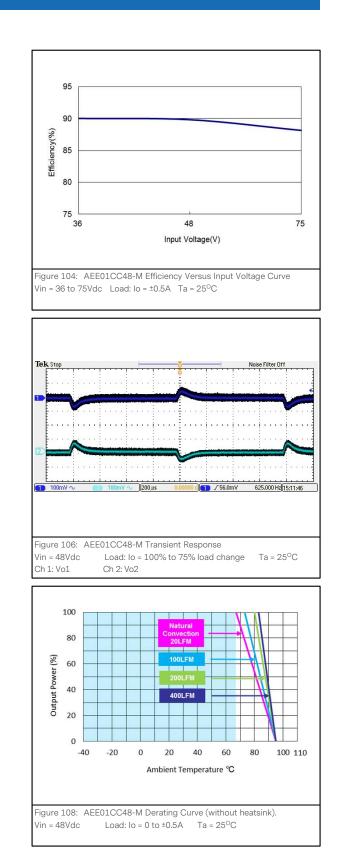
5.00 V
 20.0 V

< 10 Hz 15:19:54

72.40 \

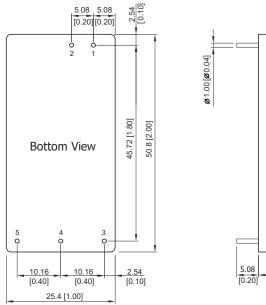

Ch3: Vin


Figure 101: AEE01BB48-M Output Voltage Startup Characteristic by Vin


Load: Io = ±0.625A Ta = 25°C

Ch 2: Vo2

AEE01CC48-M Performance Curves



Mechanical Specifications

Mechanical Outlines

Pin Connections

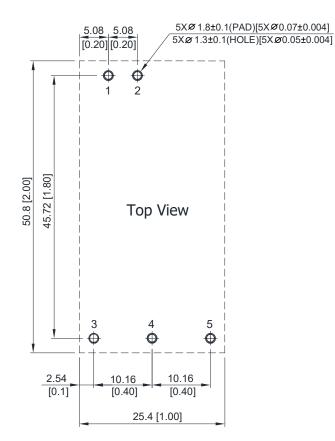
Single output

Pin 1	_	+Vin
Pin 2	-	-Vin
Pin 3	-	+Vout
Pin 4	-	No Pin
Pin 5	_	-Vout

Dual Output

_	+Vin
_	-Vin
_	+Vout
_	Common
-	-Vout
	- - -

Note:


1.All dimensions in mm (inches) 2.Tolerance: X.X \pm 0.5 (X.XX \pm 0.02) X.XX \pm 0.25 (X.XXX \pm 0.01) 3.Pin diameter: 1.0 \pm 0.05 (0.04 \pm 0.002)

Physical Characteristics

Case Size	50.8*25.4*12.00mm (2.0*1.0*0.47 inches)
Case Material	Non-Conductive Black Plastic (flammability to UL 94V-0 rated)
Pin Material	Tinned Copper
Weight	30g

Mechanical Specifications

Recommended Pad Layout

EMC Immunity

AEE15W-M series power supply is designed to meet the following EMC immunity specifications.

Table 4. EMC Specifications					
Parameter	St	Standards & Level			
EMI	Conduction & Radiation EN55011, FCC part 15		Class A		
	EN60601-1-2, 4 th				
	ESD	EN61000-4-2 Air \pm 15kV, Contact \pm 8kV	Perf. Criteria A		
	Radiated immunity	EN61000-4-3 10V/m	Ten. Ontena A		
EMS	Fast transient ¹	EN61000-4-4 ±2KV	Perf. Criteria A		
	Surge ¹	EN61000-4-5 ±1KV	Perf. Criteria A		
	Conducted immunity	EN61000-4-6 10Vrms	Perf. Criteria A		
	PFMF	EN61000-4-8 30A/M	Perf. Criteria A		

Note 1: To meet EN61000-4-4 & EN61000-4-5, an external capacitor across the input pins is required.

Safety Certifications

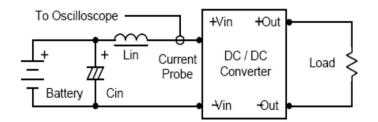
The AEE15W-M series power supply is intended for inclusion in other equipment and the installer must ensure that it is in compliance with all the requirements of the end application. This product is only for inclusion by professional installers within other equipment and must not be operated as a stand alone product.

Table 5. Safety Certifications for AEE15W-M series power supply system			
Document	Description		
ANSI/AAMI ES60601-1, CAN/CSA-C22.2 No. 60601-1	International and Canada Medical Requirements		
IEC/EN60601-1 3rd Edition 2xMOPP	International and European Medical Requirements		
ANSI/AAMI ES60601-1, 2xMOPP recognition (UL certificate), IEC/EN 60601-13 rd Edition (CB-report)	International and US Medical Requirements		

Operating Temperature

Table 6. Operating Temperature					
Parameter	Model / Condition	Min	Мах	Unit	
Operating Temperature Range (Natural Convection ¹ , See Derating)	AEE01H24-M AEE01BB24-M AEE01C48-M	-40	+73		
	AEE01B12-M AEE01CC12-M AEE01B24-M AEE01CC24-M AEE01H48-M AEE01BB48-M		+70	°c	
	AEE01C12-M AEE01H12-M AEE01BB12-M AEE03A24-M AEE01C24-M AEE03A48-M AEE01B48-M AEE01CC48-M		+67		
	AEE03A12-M		+62	1	
Operating Case Temperature	All	-	+95	°C	
Thermal Impedance (Natural Convection ¹)		13	_	°C/W	
Storage Temperature Range		-50	+125	°C	
Humidity (non-condensing)		-	95	%	
Altitude		-	4000	m	
Cooling	Natural Convection ¹				
Lead Temperature (1.5mm from case for 10Sec.)		-	260	°C	

Note1 - The "natural convection" is about 20LFM but is not equal to still air (0 LFM).

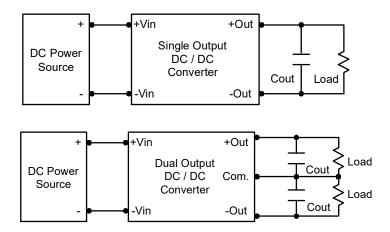

MTBF and Reliability

The MTBF of AEE15W-M series of DC/DC converters has been calculated using MIL-HDBK 217F NOTICE2, Operating Temperature 25 °C, Ground Benign.

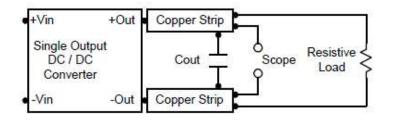
Model	MTBF	Unit	
AEE03A12-M	1,428,181		
AEE01B12-M	1,927,407		
AEE01C12-M	2,026,516		
AEE01H12-M	1,780,163		
AEE01BB12-M	1,780,163		
AEE01CC12-M	2,108,738		
AEE03A24-M	1,646,820		
AEE01B24-M	1,975,949		
AEE01C24-M	2,068,481	Hours	
AEE01H24-M	2,019,674	Hours	
AEE01BB24-M	2,019,674		
AEE01CC24-M	2,134,001		
AEE03A48-M	1,749,638		
AEE01B48-M	1,866,230		
AEE01C48-M	1,953,706		
AEE01H48-M	1,809,937		
AEE01BB48-M	1,809,937		
AEE01CC48-M	2,031,988		

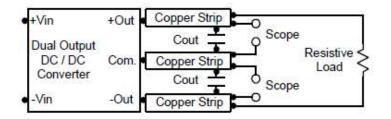
Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7μ H) and Cin (220μ F, ESR < 1.0Ω at 100 KHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 KHz.



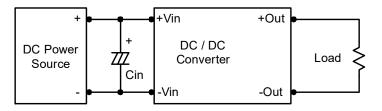
Component	Value	Reference	
Lin	4.7µH	-	
Cin	220uF (ESR<1.0Ω at 100KHz)	Aluminum Electrolytic Capacitor	


Output Ripple Reduction


A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47uF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20MHz. Position the load between 50 mm and 75 mm from the DC/DC Converter.



Input Source Impedance

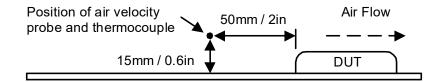
The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module.

In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup.

Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100KHz) capacitor of a 10uF for the 12V input modules and a 4.7uF for the 24V input modules and a 2.2uF for the 48V input modules.

Output Over Current Protection

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

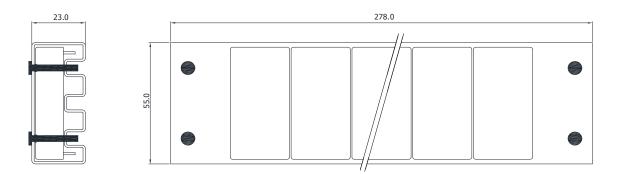

Output Over Voltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals.

The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in Table 3.

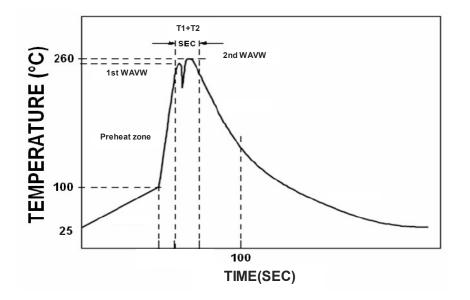
Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 95°C. The derating curves are determined from measurements obtained in a test setup.



Maximum Capacitive Load

The AEE15W-M series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the Table 3.



Packaging Information

Soldering and Reflow Considerations

Lead free wave solder profile

Profile Feature	Reference Parameter
Heating rate during preheat	Rise temp speed: 3°C/Sec max.
Final preheat temperature	Preheat temp : 100~130°C
Peak temperature	Peak temp: 250~260°C
Time within peak temperature	Peak time(T1+T2): 4~6 sec

Reference Solder: Sn-Ag-Cu: Sn-Cu: Sn-Ag Hand Welding: Soldering iron: Power 60W Welding Time: 2~4sec Temp:: 380~400°C

Record of Revision and Changes

Issue	Date	Description	Originators
1.0	01.11.2017	First Issue	XF.SUN
1.1	09.25.2017	Update the Efficiency, input current, derating curve, operating temperature, lead profile and safety standard.	XF.SUN

ABOUT ADVANCED ENERGY

Advanced Energy (AE) has devoted more than three decades to perfecting power for its global customers. AE designs and manufactures highly engineered, precision power conversion, measurement and control solutions for mission-critical applications and processes.

Our products enable customer innovation in complex applications for a wide range of industries including semiconductor equipment, industrial, manufacturing, telecommunications, data center computing, and medical. With deep applications know-how and responsive service and support across the globe, we build collaborative partnerships to meet rapid technological developments, propel growth for our customers, and innovate the future of power.

PRECISION | POWER | PERFORMANCE

For international contact information, visit advancedenergy.com.

Advanced Energy

powersales@aei.com (Sales Support) productsupport.ep@aei.com (Technical Support) +1 888 412 7832 Specifications are subject to change without notice. Not responsible for errors or omissions. ©2020 Advanced Energy Industries, Inc. All rights reserved. Advanced Energy®, and AE® are U.S. trademarks of Advanced Energy Industries, Inc.